
8 The Delphi Magazine Issue 32

Simulating Multiple Inheritance
With Delphi Interfaces
by Marco Cantù

Contrary to what happens in
C++, the Delphi inheritance

model doesn’t support multiple
inheritance. This means that each
class can have only a single base
class. The usefulness of multiple
inheritance is a topic of many
heated debates. For this reason, in
this article I’m not going to discuss
whether the absence of this con-
struct in Delphi is a pity (because
you lose some of the power of C++)
or if it is an advantage (because
you get a simpler language and
fewer problems).

I will assume that it is useful to
view a single object from multiple
‘perspectives’, in other words to
consider it as a generic object with
different base classes. After intro-
ducing the role of interfaces, we’ll
build a complete example follow-
ing this principle. Before we start,
keep in mind that Java has the
same problem: it has no multiple
inheritance but it does have inter-
faces (this language construct is
more integrated in Java than it is in
Object Pascal).

From Abstract
Classes To Interfaces
You probably know that in Delphi
it is possible to create an abstract
class, a class with one or more
abstract virtual methods. An
abstract virtual method is a virtual
method which is declared but not
defined. The definition of such a
method becomes compulsory for
derived classes (unless it is fine for
these derived classes to be
abstract as well). Actually, the
implementation of abstract classes
in Delphi differs from the imple-
mentation common in other object
oriented languages: the compiler
will allow you to create instances
of these classes and only issues a
warning. In general, it is meaning-
less to create an object of an
abstract class.

Interfaces are a new feature
introduced in Delphi 3. They allow
the definition of a sort of pure
abstract class, a class which has
only virtual abstract methods. This
definition is not precise though:
interfaces are not classes and can
have properties.

They are not classes because
they are considered to be totally
separate elements, with their own
common base interface, IUnknown,
which has the same role as TObject
for classes. They not only have
methods but can have properties
mapped to those methods. Of
course, interface properties
cannot map to data (as class prop-
erties can) simply because inter-
faces cannot have any data.
Besides this, they cannot have any
code, or any implementation. As
the name implies, they only
provide an interface.

Advantages Of Interfaces
Borland introduced interfaces in
Delphi to support COM program-
ming. This is why interface types
inherit from IUnknown. However,
interfaces have some distinct
advantages which can become
useful for non-COM programming.

A class can inherit from a single
base class, but can also implement
multiple interfaces. The drawback
is that a class which implements an
interface must also provide the

implementation for each of the
methods of the interface.

Interface type objects are refer-
ence counted and automatically
destroyed when there are no more
references to the object. This
mechanism is similar to how
Delphi manages long strings and
offers almost automatic memory
management.

The VCL already provides a few
base classes to implement the
basic behavior required by the
IUnknown interface. In a program
which doesn’t export COM objects
you can use the TInterfacedObject
class.

To function properly, each inter-
face requires a numeric ID, like the
one in Listing 1. In theory these
should be unique GUIDs (gener-
ated in the Delphi editor by press-
ing Ctrl+Shift+G) but if you don’t
plan to export these objects any
number will do.

Once you’ve declared an inter-
face you can define a class which
implements it, as in Listing 2.

As I mentioned, this class can
derive from TInterfacedObject to
inherit the implementation of the
IUnknown methods. Although it is
not compulsory to implement
interface methods with virtual
methods, this is the only approach
you can use if you want to be able
to modify these methods in further
subclasses.

type
ICanFly = interface
['{10000000-0000-0000-0000-000000000000}']
function Fly: string;

end;

➤ Listing 1

type
TAirplane = class (TInterfacedObject, ICanFly)
function Fly: string; virtual;

end;

➤ Listing 2



10 The Delphi Magazine Issue 32

Now that we have defined an
implementation of the interface,
we can write as usual:

var

Airplane1: TAirplane;

begin

Airplane1 := TAirplane.Create;

Airplane1.Fly;

Airplane1.Free;

But we can also use an interface
type variable:

var

Flyer1: ICanFly;

begin

Flyer1 := TAirplane.Create;

Flyer1.Fly;

As soon as you assign an object to
an interface variable, Delphi auto-
matically checks to see if the
object implements that interface,
using a special version of the as
operator. You can explicitly
express this operation as follows:

Flyer1 :=
TAirplane.Create as ICanFly;

In both cases, Delphi does one
extra thing: it calls the _AddRef
method of the object, increasing its
reference count. At the same time,
as soon as the Flyer1 variable goes
out of scope, Delphi calls the
_Release method, which decreases
the reference count, checks
whether the reference count is
zero, and eventually destroys the
object. For this reason, in the code
fragment above there is no code to
free the object we’ve created.

In other words, in Delphi 3,
objects referenced by interface
variables are reference-counted
and they are automatically de-
allocated when no interface
variable refers to them any more.

There are some further rules for
interfaces, but I’ll cover them
during the development of the
example presented in this article.
The only important thing to keep in
mind is that the type checking for
interface types looks at their inter-
face IDs, not at the type names (as
for a plain class).

Multiply Inherited Creatures
For this article I’ve heavily
expanded an example from one of
my books, Mastering Delphi 3,
which is a sort of standard example
for multiple inheritance. Suppose
you have a hierarchy of living crea-
ture classes. You can arrange the
animals following the standard
classifications (with categories
such as mammals, birds and
insects) or you can arrange them
by capability (with categories such
as flying animals, quadrupeds,
bipeds, meat-eaters and so on).

There is no easy way to express
such a complex hierarchy with
single inheritance. You can use
multiple inheritance if the lan-
guage you are using supports this
feature, or you can use interfaces.
This is what I’ve done in my exam-
ple, which represents a rather
common case study for multiple
inheritance. As you can see in
Table 1, the example has both a
hierarchy of interfaces and a
hierarchy of classes.

Classes:
TObject

TInterfacedObject
TAnimal

TMammal
TBat
TMonkey

TBird
TEagle
TPenguin
TDuck

Interfaces:
IUnknown

IAnimal
IMammal
IBird
ICanFly
ICanSwim
ICanWalk

➤ Table 1

Both the hierarchy of classes
and the hierarchy of interfaces
actually use single inheritance. It is
only if you look at how classes
implement the various interfaces
that the two hierarchies actually
merge, as represented in Figure 1.

The declarations of these inter-
faces and their methods are quite
long, but they are worth looking at,
since they constitute the key ele-
ment of the program. They are
shown in Listing 3.

The implementation of these
methods are totally trivial: they all
return output strings with a
description. Now that we have
designed this infrastructure, how
can we use it? How do we create
objects of these classes and how is
it possible to use polymorphism in
classes implementing multiple
interfaces?

Approaches To Polymorphism
There are actually different ways
to use polymorphism with inter-
faces. You can declare and initial-
ize an array of objects and extract
the various interfaces from an
object, or you can directly use an
array of interfaces.

In the example I have imple-
mented both approaches, by
declaring and filling two arrays
inside a form:

private
Animals:
array [1..5] of TAnimal;

AnimIntf:
array [1..5] of IAnimal;

TAnimal IAnimall

TMammal IMammal

TBird IBird

ICanWalk ICanFly ICanSwim

TBat TMonkey TDuck TPenguin TEagle

➤ Figure 1



12 The Delphi Magazine Issue 32

➤ Listing 3

Calling the methods described in
the IAnimal interface and imple-
mented in the TAnimal class is
straightforward (Listing 4).

The two calls are executed when
you press the top buttons in the
left and right columns of the form,
as shown in Figure 2. I won’t really
discuss the user interface of this
program, because it is really as
simple as it can be: many buttons
for the user to press and a memo
component for the program to
display the output.

If accessing the base class meth-
ods is trivial in both cases, it is also
quite easy to access the methods
of specific interfaces supported by
the objects. Of course, every time
the program must check if the
object actually supports that spe-
cific interface. There are several
ways to accomplish this. Let me

first focus on the techniques you
can use when accessing the array
of objects, then I’ll discuss using
the array of interfaces.

The TObject class has a method
we can use to check if an object
supports a given interface: GetIn-
terface (Listing 5). If the interface
is available, this function returns
true and sets the value of the inter-
face variable passed as the second
parameter. The first parameter is
the ID of the interface, or the
interface type. As an alternative
you can check the interface
parameter after the call, as shown
in Listing 6.

Actually there is an easier
approach, which is to use the as
operator to cast the object to the
required interface (Listing 7). The
problem is that, in this case, if the
conversion fails, Delphi triggers an
exception.

There’s another problem: when
you extract an interface from an
object, Delphi activates reference

counting for the object. Since ref-
erence counting is used only for
interfaces referring to an object
and not for plain variables, the first
time you use an interface to call a
method of an object, the reference
count is first increased and then
decreased. This surprisingly
results in the object being
destroyed! To solve the problem
you should add an initial reference
to an object after creating it. This
can be done in the constructor or
simply in the start- up code:

for I := 1 to 5 do
Memo1.Lines.Add(Animals[I].Kind);
// or:
Memo1.Lines.Add(AnimIntf[I].Kind);

➤ Listing 4

var
Swim1: ICanSwim;

...
if Animals[i].GetInterface(
ICanSwim, Swim1) then
Memo1.Lines.Add(Swim1.Swim);

➤ Listing 5

Animals[i].GetInterface(
ICanFly, Fly1);

if Assigned (Fly1) then
Memo1.Lines.Add (Fly1.Fly);

➤ Listing 6

type
IAnimal = interface
['{248CC900-64CB-11D1-98D1-004845400FAA}']
function Kind: string;

end;
ICanFly = interface (IAnimal)
['{248CC901-64CB-11D1-98D1-004845400FAA}']
function Fly: string;

end;
ICanWalk = interface (IAnimal)
['{248CC902-64CB-11D1-98D1-004845400FAA}']
function Walk: string;

end;
ICanSwim = interface (IAnimal)
['{248CC903-64CB-11D1-98D1-004845400FAA}']
function Swim: string;

end;
IMammal = interface (IAnimal)
['{248CC904-64CB-11D1-98D1-004845400FAA}']
function CarryChild: string;

end;
IBird = interface (IAnimal)
['{248CC905-64CB-11D1-98D1-004845400FAA}']
function LayEggs: string;

end;
TAnimal = class (TInterfacedObject, IAnimal)
function Kind: string; virtual; abstract;
destructor Destroy; override;

end;

TMammal = class (TAnimal, IMammal)
function CarryChild: string; virtual;

end;
TBird = class (TAnimal, IBird)
function LayEggs: string; virtual;

end;
TEagle = class (TBird, ICanFly)
function Kind: string; override;
function Fly: string; virtual;

end;
TPenguin = class (TBird, ICanWalk, ICanSwim)
function Kind: string; override;
function Walk: string; virtual;
function Swim: string; virtual;

end;
TDuck = class (TBird, ICanWalk, ICanFly, ICanSwim)
function Kind: string; override;
function Walk: string; virtual;
function Fly: string; virtual;
function Swim: string; virtual;

end;
TBat = class (TMammal, ICanFly)
function Kind: string; override;
function Fly: string; virtual;

end;
TMonkey = class (TMammal, ICanWalk)
function Kind: string; override;
function Walk: string; virtual;

end;

➤ Figure 2

try
Walker1 := Animals[i] as ICanWalk;
Memo1.Lines.Add (Walker1.Walk);

except;
end;

➤ Listing 7



April 1998 The Delphi Magazine 13

for I := 1 to 5 do

(Animals[I] as IAnimal)._AddRef;

Writing this code in the construc-
tor seems a better idea at first
sight, but we would have problems
using the objects through inter-
faces, so I’ve decided not to use the
constructor in the example.

To debug these kind of problems
(which usually result in nasty
memory errors and system
crashes) you can un-comment the
code in the destructor of the TAni-
mal class, which shows a message
box for every object being
destroyed. I’ve commented out
this code in the final version of the
program because getting ten
message boxes when the program
terminates is really annoying.

Using An Array
Of Interface Variables
As I’ve already discussed, the alter-
native to using an array of objects
is to use an array of interfaces. The
program extracts the IAnimal inter-
face from newly created objects to
initialize this array. This is done
automatically by Delphi when you
write:

AnimIntf[1] :=
TEagle.Create;

which is the same as writing:

AnimIntf[1] :=
TEagle.Create as IAnimal;

This time the program can check
whether an interface is supported
by calling the QueryInterface
method instead of GetInterface
(Listing 8).

Again, the alternative is to check
the return value of the method
(Listing 9).

We can also use the as statement
with a try-except block, exactly as
we did before with the array of
objects. What is different is that if
we use interfaces we cannot simply
use the is statement even to test if
an object inherits from the TMammal
class. Also in this case we will have
to use an interface-related
approach. The code shown in
Listing 10 is used to list the
mammals (inside a for loop).

In other words, if you decide to
use interfaces you might have to
add some extra features to them,
since you won’t be able to directly
access the actual object which the
interface relates to, unless you use
one of the interfaces implemented
by the object.

On the other hand, interfaces
have the clear advantage of being
reference counted and requiring
no support for freeing unused
objects. In a complex program this
can be really helpful.

Is This Multiple Inheritance?
The code fragments I’ve discussed
show that we can use an object and
cast it to the multiple interfaces it
supports. In other words, we can
consider an eagle as a bird or as a
flying animal and call methods of
both interfaces for a single object.
We can also cast an object to two
different base types. So, this really
is like multiple inheritance.

What we don’t get is the inheri-
tance of the actual implementation
of the methods. There is no code in
the ICanFly interface and some
eventual common code must be
re-implemented in each class that
supports this interface. However,
this also solves many typical prob-
lems with multiple inheritance in
C++: the example uses a diamond
shaped inheritance graph, there is
no need to figure out how each
class inherits from the repeated
ancestors (and no need to use
what C++ calls virtual base
classes). This is not only simpler
for programmers, but also for the
compiler.

As I mentioned at the beginning,
Borland added interfaces to Delphi
3 to support Microsoft’s COM, but
they can really be used as an extra
language feature. The only annoy-
ing element is that interfaces must
have an ID, even for internal
objects, because the type check-
ing of interfaces depends on these
numbers.

The other minor problem is that
there isn’t an is operator to check
whether an object supports a
given interface, but as we’ve seen
it is very simple to mimic this
behavior with a single method call.

Summing up, does it really make
sense to use interface types and
variables in a program that doesn’t
require COM support? My per-
sonal opinion is that, if the pro-
gram is designed around a
complex hierarchy which might
benefit from multiple inheritance,
then the answer is yes. If, after
considering the extra complexity
of this design, you disagree,
however, I’ll fully understand!

Marco Cantù is the author of
Mastering Delphi 3 and the
advanced Delphi Developer’s
Handbook. When he’s not writing
books or articles, he teaches
Delphi training classes and speaks
at many conferences worldwide.
You can contact Marco through
his website at

www.MarcoCantu.com

AnimIntf[i].QueryInterface (ICanFly, Fly1);
if Assigned (Fly1) then
Memo1.Lines.Add (Fly1.Fly);

➤ Listing 8

if AnimIntf[i].QueryInterface (ICanSwim, Swim1) <> E_NoInterface then
Memo1.Lines.Add (Swim1.Swim);

➤ Listing 9

AnimIntf[i].QueryInterface (IMammal, Mam1);
if Assigned (Mam1) then
Memo1.Lines.Add (Mam1.Kind);

➤ Listing 10


	From Abstract Classes To Interfaces
	Advantages Of Interfaces
	Multiply Inherited Creatures
	Approaches To Polymorphism
	Using An Array Of Interface Variables
	Is This Multiple Inheritance?

